FINAL

ANNUAL MONITORING REPORT
YEAR 3 (2012)
MCINTYRE CREEK RESTORTION SITE
AT HORNETS NEST PARK
MECKLENBURG COUNTY, NORTH CAROLINA
(EEP Project No. 243, Contract No. 004499)

Submitted to:
North Carolina Department of Environment and Natural Resources
Ecosystem Enhancement Program
Raleigh, North Carolina

FINAL

ANNUAL MONITORING REPORT
YEAR 3 (2012)
MCINTYRE CREEK RESTORTION SITE
AT HORNETS NEST PARK
MECKLENBURG COUNTY, NORTH CAROLINA
(EEP Project No. 243, Contract No. 004499)

Submitted to: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Raleigh, North Carolina

Prepared by:
Axiom Environmental, Inc.
218 Snow Avenue
Raleigh, North Carolina 27603

Design Firm:
KCI Associates of North Carolina, P.A.
Landmark Center I, Suite 200
4601 Six Forks Road
Raleigh, North Carolina 27609

Table of Contents

1.0 EXECUTIVE SUMMARY12.0 METHODOLOGY32.1 Vegetation Assessment32.2 Stream Assessment32.3 Wetland Assessment43.0 REFERENCES4
Appendices
APPENDIX A. PROJECT VICINITY MAP AND BACKGROUND TABLES Figure 1. Vicinity Map Table 1. Project Components and Mitigation Credits Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table Table 4. Project Baseline Information and Attributes APPENDIX B. VISUAL ASSESSMENT DATA
Figures 2 and 2A-2B. Current Conditions Plan View Tables 5A-5C. Visual Stream Morphology Stability Assessment Tables Table 6. Vegetation Condition Assessment Table Stream Fixed-Station Photos Vegetation Monitoring Plot Photos
APPENDIX C. VEGETATION PLOT DATA Table 7. Vegetation Plot Criteria Attainment Table 8. CVS Vegetation Plot Metadata Table 9A. 2012 (Year 3) Total and Planted Stems by Plot and Species Table 9B. Annual Totals and Planted Stems by Species
APPENDIX D. STREAM SURVEY DATA
Cross-section Plots Longitudinal Profile Plots Substrate Plots
Table 10a. Baseline Stream Data SummaryTable 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
Table 11a. Monitoring Data – Dimensional Morphology Summary (Dimensional Parameters – Cross Sections)
Table 11b. Monitoring Data – Stream Reach Data Summary APPENDIX E. HYDROLOGY DATA Table 12. Verification of Bankfull Events 2012 (Year 3) Groundwater Gauge Graphs Figure 3. Annual Climatic Data vs. 30-year Historic Data
Table 13. Wetland Hydrology Criteria Attainment Summary

1.0 EXECUTIVE SUMMARY

The North Carolina Ecosystem Enhancement Program (NCEEP) has completed restoration of 5178 linear feet of stream at the McIntyre Creek Restoration Site (hereafter referred to as the "Site") to assist in fulfilling stream and wetland mitigation goals in the area. This report (compiled based on EEP's *Procedural Guidance and Content Requirements for EEP Monitoring Reports* Version 1.4 dated 11/7/11) summarizes data for year 3 (2012) monitoring.

The goals and objectives of this project focus on improving local water quality, habitat, and stream stability. These goals were accomplished by the following.

- 1. Restoring stable channel morphology capable of moving flows and sediments provided by the watershed.
- 2. Improving water quality by reducing soil and riparian vegetation loss resulting from lateral erosion and bed degradation.
- 3. Improving aquatic habitat with bed variability and the use of in-stream structures.
- 4. Stabilizing tributaries draining into McIntyre Creek.
- 5. Providing educational opportunities through Mecklenburg County.
- 6. Improving the natural aesthetics of Hornets Nest Park.
- 7. Enhancing vegetation to provide habitat/food sources, shade the stream, filter overland runoff, and remove soil particles and other nutrients from stormwater.
- 8. Protecting a Site identified in a watershed that is listed as impaired for elevated levels of copper and turbidity (NCDWQ 2010).

The Site is located in Hornets Nest Park on the northern side of the City of Charlotte in Mecklenburg County. The Site is located in United States Geological Survey (USGS) Hydrologic Unit 03050101170020 (North Carolina Division of Water Quality [NCDWQ] Subbasin 03-08-34) of the Catawba River Basin and will service USGS 8-digit Cataloging Unit (CU) 03050101. The Site is located within a NCEEP Targeted Local Watershed within the Long Creek watershed targeted for restoration. Waters in the Site drain approximately 2.5 miles into Long Creek (NCDWQ No. 11-120-[2.5]), which is listed as impaired for elevated levels of copper and turbidity negatively affecting aquatic life (NCDWQ 2010).

Prior to construction, the Site contained a degraded stream channel with a disturbed riparian buffer located within Hornets Nest Park. Site streams were characterized by eroding banks, channel widening, high sediment inputs from construction occurring in the upstream watershed and onsite bank erosion, and channel incision as indicated by bank-height-ratios ranging from 1.4 to 1.9. Surrounding land uses include commercial and residential areas with narrow riparian corridors adjacent to streams. Greater than 50-55 percent of the contributing watershed had been cleared and developed.

Project construction was completed between March 2007-May 2008 and remediation construction to repair structures, stabilize banks, provide grade control, and dissipate stormwater energy was completed between August 2009-January 2010. The project restored 5178 linear feet of stream using Priority I restoration by constructing a new meandering channel within the McIntyre Creek floodplain, incorporating in-stream structures, installing grade control structures at the confluence with two tributaries, and planting with native forest species. Site activities provide 5129 Stream Mitigation Units (49 linear feet of the restored channel is located within a utility easement and therefore was not included

in the available mitigation credit). The Site will be protected by a permanent conservation easement held by the State of North Carolina.

Success criteria for stream restoration will be assessed using measurements of stream dimension, pattern, and profile; site photographs; visual assessments; and vegetation sampling. Cross-section measurements should show little or no change from the as-built cross-sections. If changes occur, evaluations will be completed to determine whether changes are minor adjustments trending towards a more stable channel or if changes indicate movement towards an unstable condition. Annual measurement should indicate stable bedform features with little change from the as-built survey. Pools are expected to maintain depth with lower water surface slope and riffles are expected to remain shallower with steeper water surface slopes. Substrate measurements should indicate maintenance of distributions from the design phase and baseline measurements. In addition, there should be an absence of any significant aggradation or degradation of the stream channel.

Several areas of bank erosion are located throughout the project as the result of high stream flows, vertical banks, urbanized watershed, flashy flows, and tight radius of curvatures. These areas are depicted on Figures 2 and 2A-2B (Appendix B) and should continue to be monitored closely. Due to the extensive impervious surfaces located within the upstream watershed the Site has periods of flashy flood flows even during smaller rain events. Flashy flood flows, compiled with minor bank instability has resulted in some degradation of the channel including eroding outer bends and slumping banks with loss of planted vegetation and reduced integrity of several structures. The loss of planted stems due to sloughing banks will most likely make the banks, particularly outer bends, more vulnerable to erosive flows and continued bank loss. Degradation is anticipated to continue to occur due to the characteristics of the watershed.

Success criteria for stream restoration will include documentation of two bankfull channel events during the monitoring period. In the event that less than two bankfull events occur during the first five years, monitoring will continue until the second event is documented. In addition, bankfull events must occur during separate monitoring years. A crest gauge is located within the Site to assist with documentation of bankfull events (Figures 2-2A, Appendix B). Two bankfull event were documented during the year 3 (2012) monitoring season for a total of six bankfull events.

Vegetation success criteria dictate that an average density of 320 stems per acre must be surviving in the first three monitoring years. Subsequently, 290 stems per acre must be surviving in year 4 and 260 stems per acre in year 5. Stem counts will be based on an average of the evaluated vegetation plots. Based on the number of stems counted, average densities were measured at 494 stems per acre surviving in year 3 (2012). The dominant species identified at the Site were planted stems of river birch (*Betula nigra*), green ash (*Fraxinus pennsylvanica*), cherrybark oak (*Quercus pagoda*), and silky dogwood (*Cornus amomum*). Seven of the ten individual plots met success criteria based on planted stems alone. Plots 2, 4, and 7 were below success criteria based on planted stems alone; however, when including naturally recruited stems of appropriate species such as box elder (*Acer negundo*) and green ash (*Fraxinus pennsylvanica*) these plots were well-above 320 stems per acre. Planted stems and recruits are growing well throughout the Site; in general vegetation is doing very well.

Vegetation problem areas within the Site include a large patch of multiflora rose (*Rosa multiflora*) and Chinese privet (*Ligustrum sinense*) north of the stream near cross-section 3, a large patch of kudzu (*Pueraria lobata*) north of the stream near cross-section 2, and scattered smaller patches of multiflora rose, Chinese privet, and kudzu (depicted on Figures 2A-2B, Appendix B).

Two groundwater gauges (Gauges 2 and 3) were installed within the Site within wetland areas created as the result of stream restoration activities. An additional gauge (Gauge 1) was placed just outside of delineated wetland areas created as the result of stream restoration activities. Success criteria for wetland groundwater hydrology at the Site require inundation or saturation within 12 inches of the ground surface for a consecutive period of 10 percent of the growing season or greater than 23 consecutive days (the growing season in Mecklenburg County begins March 22 and ends November 11 [233 days]). Gauge 2 was considered successful in year 3 (2012). Gauge 3 was just shy of success criteria with 9.4 percent inundation/saturation; however, rainfall in January 2012 was 0.5 inches below 30 percent historic data and February 2012 was 0.97 inches below 30 percent historic data.

A large beaver dam is located downstream of the project; this is currently not affecting the Site; however, beaver are beginning to cause problems within the Site and build dams. Proactive measures to control beaver are recommended to occur as necessary.

Summary information and data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the mitigation and restoration plan documents available on EEPs website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0 METHODOLOGY

2.1 Vegetation Assessment

Ten vegetation plots were established and marked after construction with four foot metal U-bar post demarking the corners with a ten foot, three-quarter inch PVC at the origin. The plots are 10 meters square and are located randomly within the Site. These plots were surveyed in June for the year 3 (2012) monitoring season using the CVS-EEP Protocol for Recording Vegetation, Version 4.2 (Lee et al. 2008) (http://cvs.bio.unc.edu/methods.htm); results are included in Appendix C. The taxonomic standard for vegetation used for this document was Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas (Weakley 2007).

2.2 Stream Assessment

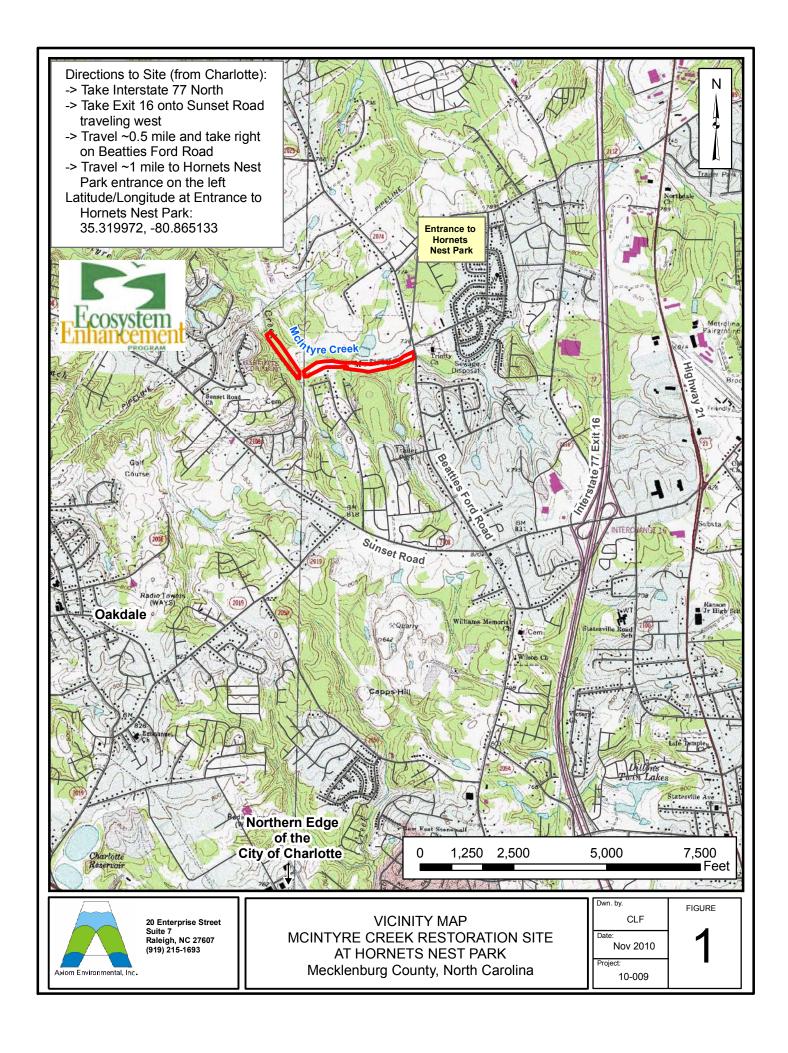
Annual stream monitoring will be conducted following procedures established in the USDA Forest Service Manual, *Stream Channel Reference Sites* (Harrelson et. al 1994) and methodologies utilized in the Rosgen stream assessment and classification system (Rosgen 1994 and 1996). Four permanent cross-sections, two riffle and two pool, were established and will be used to evaluate stream dimension; locations are depicted on Figure 2 (Appendix B). Cross-sections are permanently monumented with 4-foot metal garden posts at each end point. Cross-sections will be surveyed to provide a detailed measurement of the stream and banks including points on the adjacent floodplain, top of bank, bankfull, breaks in slope, edge of water, and thalweg. Data will be used to calculate width-depth ratios, entrenchment ratios, and bank height ratios for each cross-section. In addition, photographs will be taken and pebble counts will be conducted at each permanent cross-section location annually.

Three approximately 1000-linear foot monitoring reaches were established and will be used to evaluated stream pattern and longitudinal profile; locations are depicted on Figure 2 (Appendix B). Measurement of channel pattern will include belt-width, meander length, and radius of curvature (only in year one). Subsequently, data will be used to calculated meander-width ratios. Longitudinal profile measurements will include average water surface slopes and facet slopes and pool-to-pool spacing. Ten permanent photo points were established throughout the restoration reach; locations are depicted on Figure 2

(Appendix B) and are included in Appendix B. In addition, visual stream morphology stability assessments will be completed in each of the three monitoring reaches annually to assess the channel bed, banks, and in-stream structures.

2.3 Wetland Assessment

Three groundwater monitoring gauges were installed at the Site in February 2011 and have been maintained and monitored throughout growing season. Two gauges (Gauges 2 and 3) are located within delineated wetlands created by stream restoration activities and one gauge (Gauge 1) is located just outside of wetlands created by stream restoration activities. Graphs of groundwater hydrology and precipitation are included in Appendix E.


3.0 REFERENCES

- Lee, Michael T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2. (online). Available: http://cvs.bio.unc.edu/methods.htm.
- National Oceanic and Atmospheric Administration (NOAA). 2004. Climatography of the United States No. 20; Monthly Station Climate Summaries, 1971-2000. National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Climatic Data Center, Asheville, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2010. Final North Carolina 2010 Integrated Report Category 4 and 5 (303(d) List EPA Approved August 31, 2010) (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=8ff0bb29-62c2-4b33-810c-2eee5afa75e9&groupId=38364 [December 1, 2010]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2007. Catawba River Basin Restoration Priorities. Available: http://www.nceep.net/services/restplans/RBRPCatawba2007.pdf [June 2010]. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- Weakley, Alan S. 2007. Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas (online). Available: http://www.herbarium.unc.edu/WeakleysFlora.pdf [February 1, 2008]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.
- Weather Underground. 2011. Station at Charlotte Douglas International Airport (KCLT) in Charlotte, North Carolina. (online). Available: http://www.wunderground.com/history/airport/KCLT/2011/11/09/CustomHistory.html [November 9, 2011].

APPENDIX A

PROJECT VICINITY MAP AND BACKGROUND TABLES

- Figure 1. Vicinity Map
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243) Table 1. Project Components and Mitigation Credits

								, , ,					
	D.,ffor	Daller	156,816		nt	Priority I stream restoration along the entire project, installation of in-stream structures, stabilizing the confluence of two incoming tributaries, and planting with native forest vegetation.			Buffer (square footage)	156,816		156,816	156,816 BMUs
		uivalent	${ m ined}^{**}$		Comment	ream restoration along the en of in-stream structures, stab of two incoming tributaries, swith native forest vegetation.	-	-	Buf				
	Vetland	Restoration Equivalent	To be Determined**			Priority I stream installation of in confluence of two with r			Riparian Wetland (acres)			To Be Determined**	
	Riparian Wetland	u			Mitigation Ratio	1:1	3:1		Riparia			To B	
Mitigation Credits		Restoration		onents	Restoration Linear Footage/ Acreage	*8212	To Be Determined**	Component Summation	Stream (linear footage)	5178		5178	5129 SMUs*
Mit		Restoration Equivalent	-	Projects Components	Restoration/ Restoration Equivalent	Restoration	Creation	Comp	Stream (512
	Stream	Restoratio			Priority Approach	I	1	•					
	Str	Restoration	5129*		Existing Linear Footage/ Acreage	0005~	0		Restoration Level	Restoration	Creation	Totals	Mitigation Units
		Re			Station Range	ŀ	l		Restor	Re	O		Mitig
		Type	Totals		Project Component/ Reach ID	McIntyre Creek	Wetland						

^{*}Site activities restored 5178 linear feet of stream; however, 49 linear feet is located within a utility easement and is not included in the SMU calculation.
**The wetland creation boundary will be determined after gathering gauge data for at least two years.

Table 2. Project Activity and Reporting History McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Elapsed Time Since Grading Complete: 3 years Elapsed Time Since Planting Complete: 4.5 year

Number of Reporting Years: 3

Transcr of Reporting Tentor C	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Restoration Plan		December 2002
Construction Plans		March 2005
Site Construction and Planting		May 2008
As-built Construction Drawings		February 2008
Remediation Construction		January 2010
As-built Remediation Construction Drawings		November 2009
As-built Record Drawings		February 2010
Baseline Monitoring Document	July 2010	December 2010
Year 1 (2010) Monitoring Document	December 2010	December 2010
Year 2 (2011) Monitoring Document	November 2011	December 2011
Year 3 (2012) Monitoring Document	November 2012	November 2012

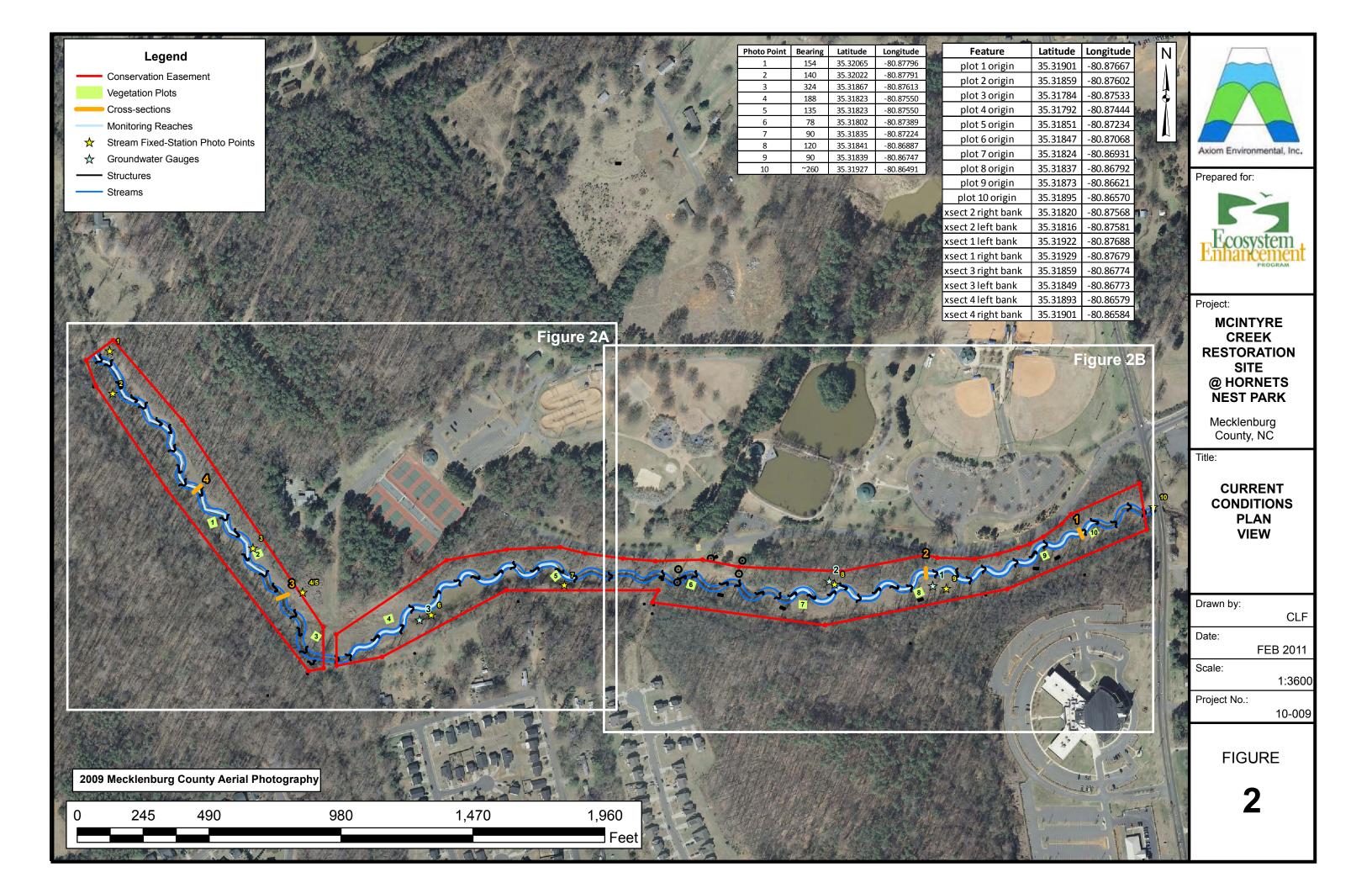
Table 3. Project Contacts Table

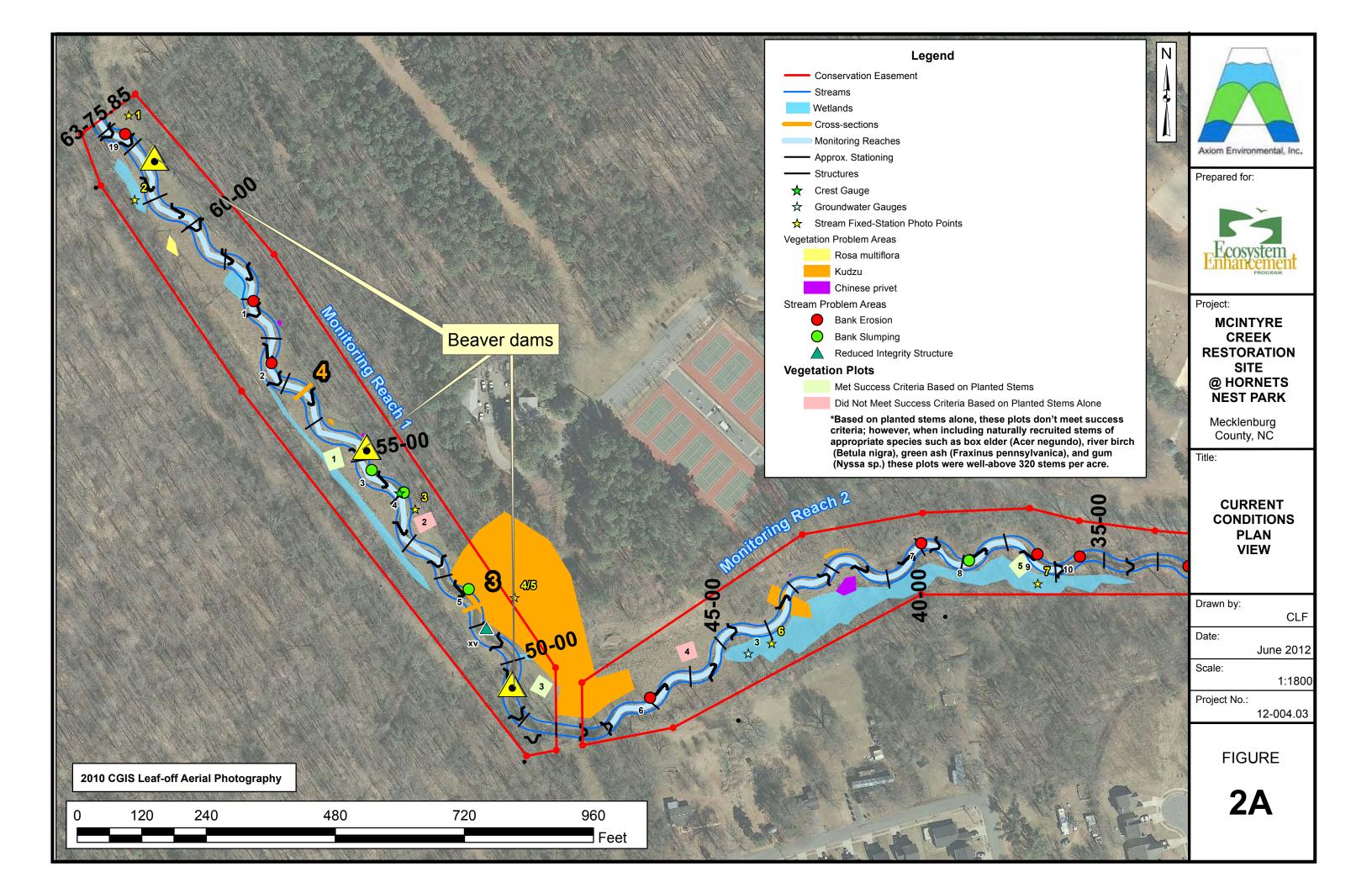
McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Designer	KCI Associates of North Carolina, P.A.
	Landmark Center I, Suite 220
	4601 Six Forks Road
	Raleigh, NC 27609
	Gary Mryncza 919-783-9214
Construction and Planting Contractor	United Construction, Inc.
	6000 Old Pineville Road
	Charlotte, NC 28217
	704-679-9229
As-built Surveyor	CSC of NC PC
	4455 Morris Park Drive, Suite F
	Charlotte, NC 28227
	Mohammad Zamani 704-573-0112
Baseline Data Collection and	Axiom Environmental, Inc.
Monitoring Performers	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Baseline Information and Attributes

McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)


McIntyre Creek Restoration Site at Hornets N	
Project Inf	
Project Name	McIntyre Creek Restoration Site
Project County	Mecklenburg County, North Carolina
Project Area	17 acres
Project Coordinates	35.319972, -80.865133
Project Watershed Su	
Physiographic Region	Piedmont
Ecoregion	Southern Outer Piedmont
Project River Basin	Catawba
USGS 8-digit HUC	03050101
USGS 14-digit HUC	03050101170020
NCDWQ Subbasin	03-08-34
Project Drainage Area	2.55 square miles
Project Drainage Area Impervious Surface	>50%
CGIA Land Use Classification	Urban High
Reach Summar	y Information
Restored length	5178 linear feet
Drainage Area	2.55 square miles
NCDWQ Index Number	11-120-3-(1)
NCDWQ Classification	С
Valley Type/Morphological Description	VIII/E5
Dominant Soil Series	Monacan
Drainage Class	Moderately well-somewhat poorly
Soil Hydric Status	Contains 5% hydric Wehadkee soils
Slope	0.0033
FEMA Classification	100-Year Floodzone
Native Vegetation Community	Bottomland Hardwood Forest
Percent Composition of Exotic Invasives	5.9%
Regulatory Co	onsiderations
Regulation	Applicable
Waters of the U.S. –Sections 404 and 401	Yes-Received Appropriate Permits
Endangered Species Act	No
Historic Preservation Act	No
CZMA/CAMA	No
FEMA Floodplain Compliance	Yes-Received a No Rise Certification
Essential Fisheries Habitat	No


APPENDIX B

VISUAL ASSESSMENT DATA

Vegetation Monitoring Plot Photos

Figures 2 and 2A-2B. Current Conditions Plan View
Tables 5A-5C. Visual Stream Morphology Stability Assessment Tables
Table 6. Vegetation Condition Assessment Table
Stream Fixed-Station Photos

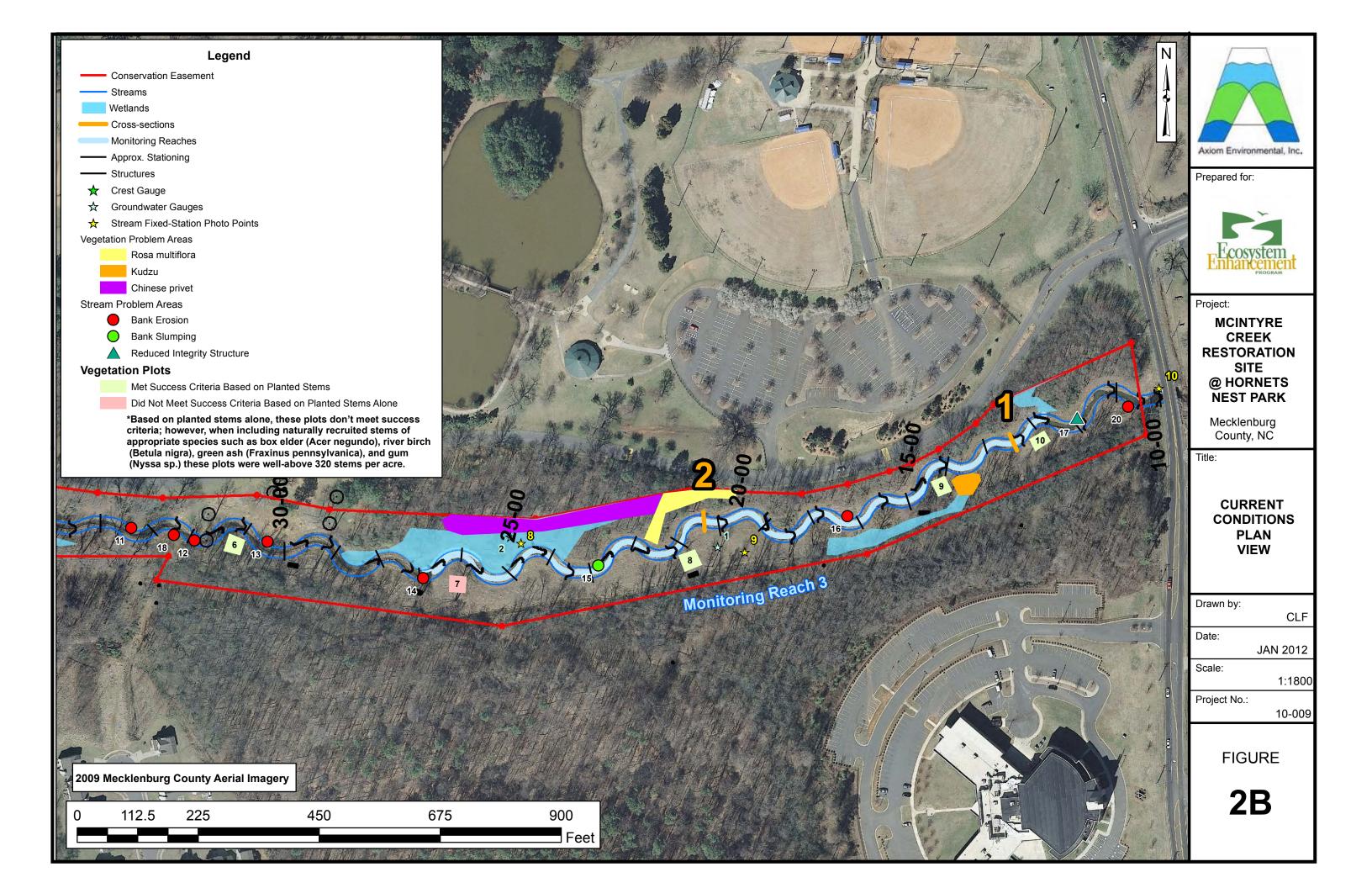


Table 5A. Visual Stream Morphology Stability Assessment McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Reach ID Reach 1
Assessed Length 1000

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			8	155	85%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	17	17			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth⊵ 1.6)	17	17			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	17	17			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	17	17			100%			
		2. Thalweg centering at downstream of meander (Glide)	17	17			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			2	25	99%	2	15	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			2	40	98%	1	5	98%
	3. Mass Wasting	Bank slumping, calving, or collapse			6	155	92%	3	27	94%
				Totals	10	220	89%	6	47	91%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	7			71%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	7			71%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	7			71%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	5	7			71%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	7	7			100%			

Table 5B. Visual Stream Morphology Stability Assessment

McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Reach ID Assessed Length Reach 2 1000

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	17	18			94%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	18	18			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	17	18			94%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	18	18			100%			
		Thalweg centering at downstream of meander (Glide)	18	18			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			5	80	96%	2	10	97%
	3. Mass Wasting	Bank slumping, calving, or collapse			6	155	92%	3	40	94%
				Totals	11	235	88%	5	50	91%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	6	8			75%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	6	8			75%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	6	8			75%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	6	8			75%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 5C. Visual Stream Morphology Stability Assessment

McIntyre Creek Restoration Site at Hornets Nest Park (EEP Project Number 243)

Reach ID Assessed Length Reach 3 1000

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	16	17			94%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	16	16			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	15	16			94%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	16	16			100%			
		Thalweg centering at downstream of meander (Glide)	17	17			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			3	30	99%	0	0	99%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			5	65	97%	1	10	97%
	3. Mass Wasting	Bank slumping, calving, or collapse			6	85	96%	2	15	97%
				Totals	14	180	91%	3	25	92%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	6			50%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	6			50%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	6			50%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	3	6			50%			
	4. Habitat	Pool forming structures maintaining ∼ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	6	6			100%			

Table 6 <u>Vegetation Condition Assessment</u>
McIntyre Creek Restoration Site (EEP Project 243)

Planted Acreage¹ 17

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very small area of limited cover of both woody and herbaceous material near vegetation plot 2.	None	NA	0	0.00	0.0%
2. Low Stem Density Areas	NA	NA	NA	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	NA	NA	NA	0	0.00	0.0%
		Cu	mulative Total	0	0.00	0.0%

Easement Acreage² 17

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Large patch of multiflora rose (<i>Rosa multiflora</i>) and Chinese privet (<i>Ligustrum sinense</i>) north of the stream near cross-section 3, a large patch of kudzu (<i>Pueraria lobata</i>) north of the stream near cross-section 2, and scattered smaller patches of multiflora rose, Chinese privet, and kudzu.	20 SF	Pattern and Color	17	1.90	11.2%
5. Easement Encroachment Areas ³	NA	NA	NA	0	0.00	0.0%

^{1 =} Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

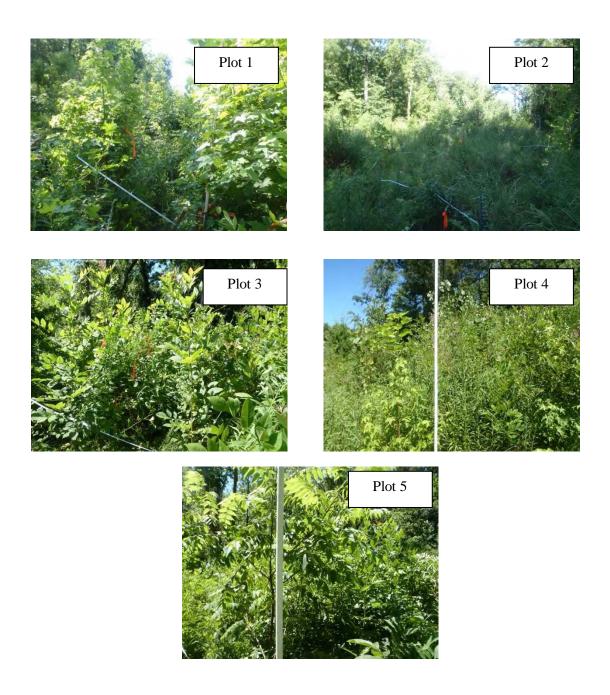
^{2 =} The acreage within the easement boundaries.

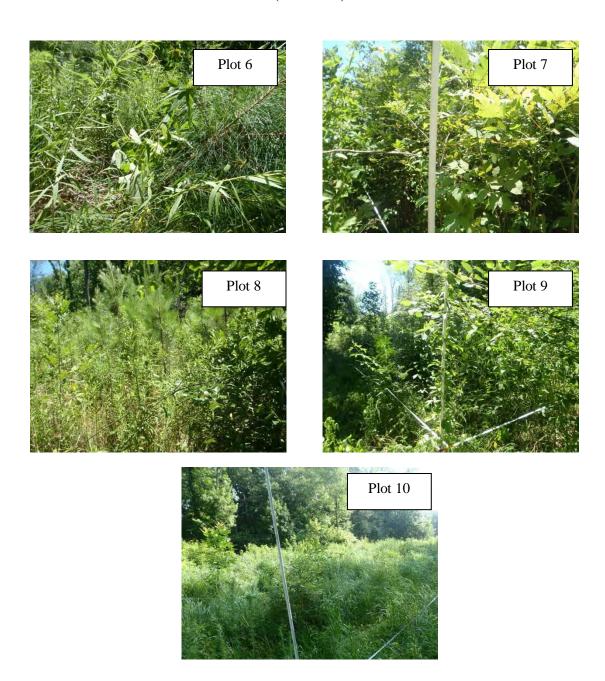
^{3 =} Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

^{4 =} Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EFP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but governed across the state with any frequency. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italizes are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition for an area is somewhere between isolated specimens and dense, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of

McIntyre Creek Stream Fixed-Station Photographs Taken June 2012

McIntyre Creek Stream Fixed-Station Photographs Taken June 2012 (continued)





McIntyre Creek Vegetation Monitoring Photographs Taken June 2012

McIntyre Creek Vegetation Monitoring Photographs Taken June 2012 (continued)

APPENDIX C

VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment

Table 8. CVS Vegetation Plot Metadata

Table 9A. 2012 (Year 3) Total and Planted Stems by Plot and Species

Table 9B. Annual Totals and Planted Stems by Species

Table 7. Vegetation Plot Criteria Attainment McIntyre Creek Restoration Site (EEP Project Number 234)

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	No*	
3	Yes	
4	No*	
5	Yes	700/
6	Yes	70%
7	No*	
8	Yes	
9	Yes	
10	Yes	

^{*}Based on planted stems alone, these plots don't meet success criteria; however, when including naturally recruited stems of appropriate species such as box elder (*Acer negundo*) and green ash (*Fraxinus pennsylvanica*) these plots were well-above 320 stems per acre.

Table 8. CVS Vegetation Plot Metadata McIntyre Creek Restoration Site (EEP Project Number 234)

MULLILY I COLCEN INCSTOLATION	incling to extend the state of the property of
Report Prepared By	Corri Faquin
Date Prepared	7/18/2012 9:56
database name	Axiom-EEP-2012-A.mdb
database location	C:\Axiom\Business\CVS
computer name	CORRI-PC
file size	49704960
DESCRIPTION OF WORKSHEETS IN THIS DOCI	TS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems,
Proj, total stems	and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are
ALL Stems by Plot and spp	excluded.
PROJECT SUMMARY	
Project Code	243
project Name	McIntyre Creek @ Hornets Nest Park
Description	stream restoration
River Basin	Catawba
length(ft)	5178
stream-to-edge width (ft)	130
area (sq m)	63120
Required Plots (calculated)	NA
Sampled Plots	10

McIntyre Creek (final) at Hornets Nest Park EEP Project Number 243 Mecklenburg County, North Carolina

Monitoring Year 3 of 5 (2012) November 2012 Appendices

Table 9A. 2012 (Year 3) Total Planted and Natural Recruits Stems by Plot and Species

McIntyre Creek															_			ata (MY	3 2012)												
				3-AXE-0	0001	E24	3-AXE-(0002	E243-	-AXE-00	003	E24	3-AXE-0	0004	E24	3-AXE-0			3-AXE-0	006	E24	3-AXE-(0007	E243	3-AXE-	8000	E24	3-AXE-0	0009	E24:	3-AXE-0010
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS P	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all T
Acer negundo	boxelder	Tree			10			10	3	3	3									6			13			6	5		6		
Acer rubrum	red maple	Tree									19												10			11	1	<u> </u>	<u> </u>		
Alnus serrulata	hazel alder	Shrub													2	. 2	2	2	2	2	1	1	1	. 2	2	2 2	2	<u> </u>			
Asimina triloba	pawpaw	Tree	1	1	1																							<u> </u>			
Baccharis halimifolia	eastern baccharis	Shrub												2						3						1	L	<u> </u>			
Betula nigra	river birch	Tree	1	1	1	. 1	1	. 1	1	1	1			1	2	. 2	2	14	14	16	4	4	4	4	4	4	1 2	2	<u>.</u> 2	4	4
Carya	hickory	Tree			1						3						1											<u> </u>		1	1
Catalpa bignonioides	southern catalpa	Tree																										<u> </u>			
Cornus amomum	silky dogwood	Shrub				1	1	. 1	1	1	1				3	3	3	2	2	2	1	1	1	1	1	. 1	1	1	. 2		
Cornus florida	flowering dogwood	Tree																													
Diospyros virginiana	common persimmon	Tree																													
Euonymus alatus		Exotic																													
Fraxinus pennsylvanica	green ash	Tree	2	2	15	3	3	14	7	7	35			72			140	3	3	28			41			11	4	4	1 10	6	6 3
Juglans nigra	black walnut	Tree																													
Juniperus virginiana	eastern redcedar	Tree																											1		
Lindera benzoin	northern spicebush	Shrub	2	2	2																								1		
Liquidambar styraciflua	sweetgum	Tree			42			8			1			17			13						4			11	I		1		
Liriodendron tulipifera	tuliptree	Tree	2	2	11													5	5	6			1						1	1	1
Morella	bayberry	shrub																											1		
Morella cerifera	wax myrtle	shrub																											1		
Morus rubra	red mulberry	Tree																											1		
Nyssa	tupelo	Tree																											1		
Pinus taeda	loblolly pine	Tree			4									11						9			13			17	7		1		
Platanus occidentalis	American sycamore	Tree	1	1	1	. 1	1	1																					1		
Populus deltoides	eastern cottonwood	Tree												3			1			2			7						1		
Populus heterophylla	swamp cottonwood	Tree																											1		
Prunus serotina	black cherry	Tree																													1
Quercus	oak	Tree																													1
Quercus lyrata	overcup oak	Tree							1	1	1																		1		
Quercus michauxii	swamp chestnut oak	Tree																			1	1	1						1		
Quercus pagoda	cherrybark oak	Tree	4	4	4				2	2	2				2	. 2	2	. 1	1	1				3	3	3	3 1	1	1 1	. 1	1
Quercus phellos	willow oak	Tree	3	3	3				2	2	2				1	. 1	1												1		
Quercus rubra		Tree																								1				1	1
Salix	willow	Shrub or Tree																											 		
Salix nigra	black willow	Tree				1														2						 	1		+		
Ulmus	elm	Tree	2	2	2	1	1	1						1												 			+		
Ulmus alata	winged elm	Tree		-	-		t		3	3	3			_												 			+		
Ulmus americana	American elm	Tree	1	1	1					\dashv																† 	1		+		
	-	Stem count	19	19	98	7	7	36	20	20	71	n	0	107	10	10	165	27	27	77	7	7	96	10	10	67	7 8	8	3 21	. 14	14 4
		size (ares)		1	, ,	'	1		20	1	, 1	ı – ,	1	107		1	103	/	1	,,		1	, ,,	10	1	., 57	T	1		1-7	1
		size (ACRES)		0.02			0.02		1	0.02			0.02			0.02			0.02			0.02			0.02		1	0.02			0.02
		Species count	10		14	. 5	5.02	7	gl	8	11	n	0.02	7	5	5.02	Q	6	6	11	1	1	11	4	1	10) 4	1.02	<u>. </u>	. 6	6
		Stems per ACRE					283.3	1457	809.4	_	2873		·	,	404.7	404.7	6677	1093	1093			283.3	3885	404.7	404.7	2711	323.7	323.7	/ 849 F	566.6	566.6 198
Color for Density			Pnol S :					•		-55.1	_3,3	- 0	J	.550	.5	.5	55,7	_555	_555	5110		_55.5	5555	.5	. 57		020.7	3 - 3 - 7	0.5.0	550.5	200.0 100

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%

PnoLS = Planted stems excluding livestakes

P-all= Planted stems including livestakes

T = Planted stems and natural recruits

Total includes stems of natural recruits

Table 9B. Annual Total Planted and Natural Recruits Stems by Species

McIntyre Creek								Annua	Means	5				
			M	Y3 (201	.2)	М	Y2 (201	.1)	M	Y1 (201	LO)	M	IYO (201	(0)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Acer negundo	boxelder	Tree	3	3	55	3	3	156	3	3	58	3	3	127
Acer rubrum	red maple	Tree			40			16						50
Alnus serrulata	hazel alder	Shrub	7	7	7	7	7	7	6	6	9	6	6	
Asimina triloba	pawpaw	Tree	1	1	1	1	1	1	1	1	1	1	1	18
Baccharis halimifolia	eastern baccharis	Shrub			6			13			8			22
Betula nigra	river birch	Tree	33	33	36	35	35	55	13	13	29	14	14	67
Carya	hickory	Tree	1	1	6	1	1	1	1	1	1	1	1	1
Catalpa bignonioides	southern catalpa	Tree												2
Cornus amomum	silky dogwood	Shrub	10	10	11	10	10	10	9	9	9	9	9	ç
Cornus florida	flowering dogwood	Tree												7
Diospyros virginiana	common persimmon	Tree												Ĺ
Euonymus alatus		Exotic										1	1	1
Fraxinus pennsylvanica	green ash	Tree	25	25	397	27	27	513	27	27	278	25	25	1513
Juglans nigra	black walnut	Tree						1						3
Juniperus virginiana	eastern redcedar	Tree						1						3
Lindera benzoin	northern spicebush	Shrub	2	2	2	2	2	2	2	2	2	2	2	2
Liquidambar styraciflua	sweetgum	Tree			102			57			43			82
Liriodendron tulipifera	tuliptree	Tree	8	8	19	9	9	16	9	9	19	9	9	25
Morella	bayberry	shrub									1			
Morella cerifera	wax myrtle	shrub												2
Morus rubra	red mulberry	Tree												-
Nyssa	tupelo	Tree												(3)
Pinus taeda	loblolly pine	Tree			57			54			40			76
Platanus occidentalis	American sycamore	Tree	2	2	2	1	1	7	1	1	6	1	1	8
Populus deltoides	eastern cottonwood	Tree			13			26						35
Populus heterophylla	swamp cottonwood	Tree												4
Prunus serotina	black cherry	Tree						4						4
Quercus	oak	Tree				1	1	1	1	1	1	1	1	1
Quercus lyrata	overcup oak	Tree	1	1	1	1	1	1	1	1	1			
Quercus michauxii	swamp chestnut oak	Tree	1	1	1	1	1	1	1	1	1	1	1	1
Quercus pagoda	cherrybark oak	Tree	14	14	14	15	15	15	13	13	13	14	14	14
Quercus phellos	willow oak	Tree	6	6	6	9	9	9	10	10	10	10	10	10
Quercus rubra	northern red oak	Tree	1	1	1	1	1	1	1	1	1	1	1	1
Salix	willow	Shrub or Tree												1
Salix nigra	black willow	Tree			2			1						
Ulmus	elm	Tree	3	3	4	5	5	6	4	4	4	5	5	Ć
Ulmus alata	winged elm	Tree	3	3	3	3	3	3	3	3	3			2
Ulmus americana	American elm	Tree	1	1	1									
		Stem count	122	122	787	132	132	978	106	106	538	104	104	2115
		size (ares)		10			10			10	-		10	-
		size (ACRES)		0.25			0.25			0.25			0.25	
		Species count	_		24	18		27	18		22	17		34
		Stems per ACRE				534.2		3958					420.9	

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%

PnoLS = Planted stems excluding livestakes
P-all= Planted stems including livestakes
T = Planted stems and natural recruits
Total includes stems of natural recruits

APPENDIX D STREAM SURVEY DATA

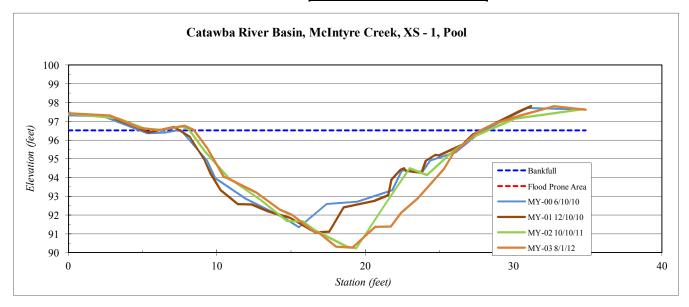
Cross-section Plots

Longitudinal Profile Plots

Substrate Plots

Tables 10a-b. Baseline Stream Data Summary

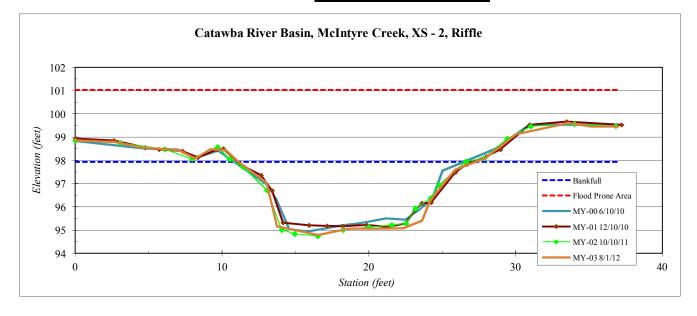
Tables 11a-b. Monitoring Data


River Basin:	Catawba
Watershed:	McIntyre Creek
XS ID	XS - 1, Pool
Feature	Pool
Date:	8/1/2012
Field Crew:	Perkinson, Dean, Jernigan

Station	Elevation
0.0	97.43
2.8	97.30
4.8	96.66
6.0	96.52
7.8	96.76
8.4	96.53
9.4	95.55
10.5	94.03
10.7	93.99
12.7	93.20
14.2	92.29
15.1	92.00
16.5	91.11
16.9	91.03
18.0	90.32
19.1	90.26
20.7	91.37
21.7	91.38
22.4	92.12
23.5	92.90
23.5 25.3	94.5
26.0	95.4
26.7	95.8
27.5	96.4
28.7	96.9
30.5	97.3
32.7	97.8
34.9	97.6

SUMMARY DATA	
Bankfull Elevation:	96.5
Bankfull Cross-Sectional Area:	70.0
Bankfull Width:	19.4
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	6.3
Mean Depth at Bankfull:	3.6
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

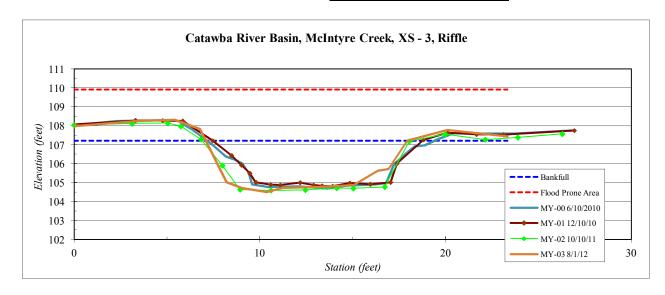
Stream Type E	
---------------	--


River Basin:	Catawba
Watershed:	McIntyre Creek
XS ID	XS - 2, Riffle
Feature	Riffle
Date:	8/1/2012
Field Crew:	Perkinson, Dean, Jernigan

Station	Elevation
0.00	98.86
2.66	98.80
4.44	98.57
7.06	98.44
8.19	98.08
9.16	98.48
10.25	98.45
11.14	97.93
13.03	97.05
13.74	95.16
16.54	94.79
18.65	95.06
20.70	95.07
22.35	95.09
23.63	95.41
24.2	96.29
25.9	97.60
27.9	98.09
30.0	99.13
33.6	99.61
35.1	99.45
37.0	99.46

SUMMARY DATA	
Bankfull Elevation:	97.9
Bankfull Cross-Sectional Area:	33.8
Bankfull Width:	16.1
Flood Prone Area Elevation:	101.0
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.1
Mean Depth at Bankfull:	2.1
W / D Ratio:	7.7
Entrenchment Ratio:	9.3
Bank Height Ratio:	1.0

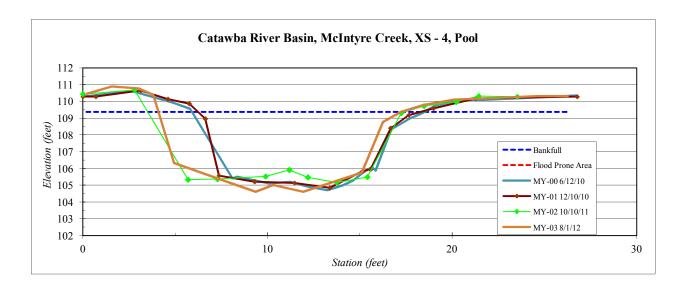
Stream Type	Е


River Basin:	Catawba
Watershed:	McIntyre Creek
XS ID	XS - 3, Riffle
Feature	Riffle
Date:	8/1/2012
Field Crew:	Perkinson, Dean, Jernigan

Station	Elevation
0.00	107.97
3.34	108.25
5.42	108.31
6.77	107.82
8.20	105.02
9.01	104.72
10.37	104.50
11.21	104.71
13.08	104.77
15.06	104.86
16.38	105.63
16.92	105.71
17.94	107.21
20.10	107.76
23.3	107.43

SUMMARY DATA	
Bankfull Elevation:	107.2
Bankfull Cross-Sectional Area:	22.4
Bankfull Width:	10.9
Flood Prone Area Elevation:	109.9
Flood Prone Width:	150.0
Max Depth at Bankfull:	2.7
Mean Depth at Bankfull:	2.1
W / D Ratio:	5.3
Entrenchment Ratio:	13.8
Bank Height Ratio:	1.0

Stream Type	Е
-------------	---


River Basin:	Catawba
Watershed:	McIntyre Creek
XS ID	XS - 4, Pool
Feature	Pool
Date:	8/1/2012
Field Crew:	Perkinson, Dean, Jernigan

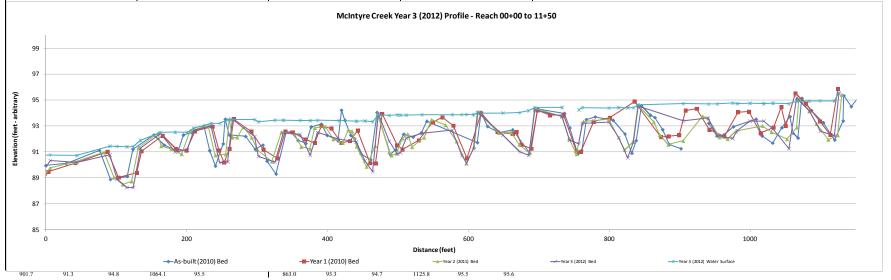
Station	Elevation
0.2	110.5
1.6	110.9
3.0	110.8
3.8	110.4
4.9	106.3
7.2	105.4
9.4	104.6
10.3	105.0
12.0	104.6
15.1	105.8
16.3	108.8
17.2	109.4
18.4	109.8
20.1	110.1
22.3	110.2
24.6	110.3
26.3	110.3

SUMMARY DATA	
Bankfull Elevation:	109.4
Bankfull Cross-Sectional Area:	46.2
Bankfull Width:	13.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	4.8
Mean Depth at Bankfull:	3.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type	C/E
-------------	-----

 Project Name
 McIntyre Creek - Year 3 (2012) Profile

 Reach
 Reach 1 (00+00 - 11+50)


 Feature
 Profile

 Date
 8/1/12

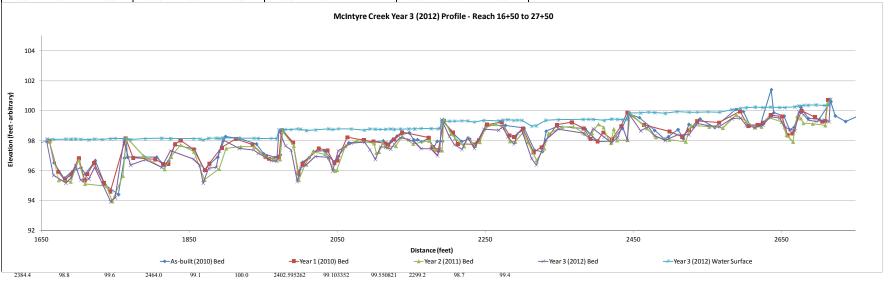
 Crew
 Perkinson, Dean, Jernigan

CICH	r crkinson, izcan,	Jenngan									
	2010			2010			2011			2012	
	As-built Surve	v	Y	ear 1 Monitoring \	Survey	Year 2 Monitoring \Survey Year 3 Monitoring \Su			Survey		
Station	Bed Elevation	Water Elevation	Station		Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
0.0	90.0	90.4	-13.1	88.0	90.6	-23.8	88.0	90.4	-19.1	88.6	90.8
28.8	90.1	90.4	3.4	89.5	90.6	-17.1	88.0	90.4	-11.7	88.9	90.7
76.2	91.1	91.4	41.8	90.1	90.6	5.8	89.8	90.4	6.2	90.3	90.8
91.6	88.9	91.3	87.6	91.0	91.4	41.5	90.2	90.6	44.1	90.2	90.7
115.6	89.1	91.5	103.3	89.0	91.4	82.6	91.0	91.4	90.8	90.8	91.5
123.7	91.2	91.6	129.2	89.4	91.4	96.7	89.0	91.4	101.0	88.9	91.4
153.3	92.3	92.5	135.8	91.1	91.6	109.1	88.5		115.1	88.3	91.4
168.2	91.5	92.6	165.9	92.3	92.5	121.6	88.7		124.0	88.3	91.4
187.5	91.1	92.6	184.9	91.2	92.5	121.7	88.7	91.5	134.6	91.3	91.9
195.2	92.3	92.7	199.3	91.1	92.5	131.5	91.3	91.9	162.5	92.4	92.5
207.4	92.5	92.9	211.6	92.6	92.8	159.1	92.4	92.5	183.6	91.0	92.5
224.3	93.0	93.3	236.6	93.0	93.2	163.6	91.5	92.6	200.6	91.2	92.5
232.6	91.1	93.3	245.6	91.1	93.2	178.1	91.2	92.6	209.9	92.6	92.8
240.7	89.9	93.4	253.0	90.2	93.1	192.7	90.8	92.6	234.5	93.0	93.2
251.7	91.6	93.3	260.6	91.2	93.2	205.0	92.6		246.9	90.2	93.2
254.7	93.5	93.7	266.9	93.5	93.6	230.6	93.0	93.2	258.2	90.2	93.5
260.4	92.3	93.4	291.4	92.6	93.6	240.6	90.7	93.2	264.8	93.5	93.5
283.4	92.2	93.6	308.8	91.2	93.6	255.5	90.8	93.2	296.4	92.2	93.5
297.3	91.2	93.4	328.6	90.5	93.6	260.4	93.5	93.5	301.9	90.7	93.3
308.1	91.5	93.5	340.0	92.6	93.6	265.0	92.1	93.6	325.2	90.2	93.5
314.1	90.3		350.9	92.5	93.6	271.5	92.1	93.7	337.2	92.5	93.4
326.8	89.3	93.6	368.3	92.0	93.6	280.4	92.9	93.7	360.9	92.4	93.4
341.2	92.5	93.7	381.8	91.7	93.6	292.1	92.1	93.7	375.2	90.7	93.4
347.8	92.5	93.7	391.3	93.0	93.6	300.6	91.2		385.8	92.5	93.4
357.9	91.9	93.8	405.4	92.8	93.6	320.9	90.3	93.7	415.4	92.0	93.4
369.2	91.7	93.7	419.6	91.7	93.6	334.3	92.5	93.7	440.7	91.8	93.4
376.7	92.9	93.7	431.8	91.8	93.5	352.8	92.4	93.7	453.1	90.3	93.4

	As-built	2010	2011	2012
Avg. Water Surface Slope	0.0035	0.0042	0.0041	0.0043
Riffle Length	32	26	27	34
Avg. Riffle Slope	0.0042	0.0047	0.0023	0.0034
Pool Length	16	19	20	18
Avg. Pool Slope	76	76	0.0023	0.0033

 Project Name
 McIntyre Creek - Year 3 (2012) Profile

 Reach
 Reach 2 (16+50 - 27+50)


 Feature
 Profile

 Date
 8/1/12

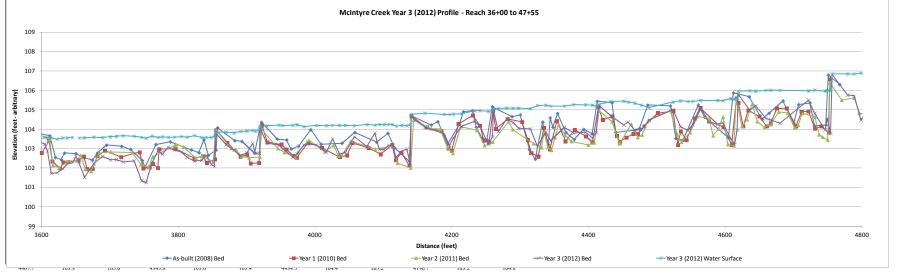
 Crew
 Perkinson, Dean, Jernigan

Crew	Perkinson, Dean.	Jenngan						1			
	2010			2010			2011			2012	
	As-built Surve	ey	Year 1 Monitoring \Survey			Year 2 Monitoring \Survey			Year 3 Monitoring \Survey		
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
1639.0	97.7	97.8	1660.7	98.0	98.2	1660.7	98.0	98.1	1657.2	98.0	98.1
1660.7	98.0	98.2	1672.6	95.9	98.2	1673.5	95.4	98.2	1666.5	95.7	98.1
1667.1	96.5	98.2	1681.9	95.4	98.2	1689.6	95.3	98.2	1683.0	95.2	98.1
1680.9	95.5		1690.5	95.8	98.2	1700.4	96.7	98.2	1690.0	95.5	98.1
1681.2	95.5	98.2	1700.6	96.8	98.2	1708.9	95.1		1696.0	96.3	98.1
1691.8	95.9	98.3	1708.4	95.3	98.2	1737.9	95.0		1703.1	95.4	98.1
1703.4	96.2	98.3	1712.0	95.8	98.1	1745.7	94.0	98.1	1714.1	95.4	98.1
1709.4	95.8	98.3	1720.9	96.5	98.2	1760.1	95.6	98.1	1721.9	96.2	98.1
1722.7	96.7	98.2	1734.4	95.2	98.2	1765.4	98.2	98.2	1732.2	95.1	98.1
1735.8	95.1	98.2	1743.2	94.6	98.2	1787.6	97.0		1743.5	93.9	98.1
1754.1	94.4	98.3	1763.9	98.2	98.3	1791.8	96.9		1749.7	94.2	98.2
1762.1	96.8	98.3	1773.9	96.9	98.2	1816.4	96.1	98.2	1761.5	98.0	98.1
1764.9	98.2	98.3	1803.7	96.8	98.2	1825.5	96.9	98.2	1770.5	96.4	98.1
1766.3	96.9	98.3	1814.3	96.5	98.2	1837.9	97.7	98.2	1790.5	96.7	98.1
1789.2	96.9	98.3	1821.3	96.5	98.2	1856.1	97.3	98.2	1812.3	96.2	98.2
1805.7	96.9	98.3	1830.5	97.8	98.3	1870.2	95.4	98.2	1824.4	97.3	98.1
1815.7	96.3	98.3	1838.1	98.0	98.2	1890.0	96.1	98.2	1855.3	96.8	98.1
1822.0	96.7	98.3	1855.6	97.4	98.2	1899.6	97.5	98.2	1863.9	96.4	98.1
1829.8	97.7	98.3	1870.8	96.1	98.3	1919.2	97.6	98.2	1868.7	95.2	98.0
1856.8	97.4	98.3	1876.9	96.5	98.3	1937.6	97.6	98.2	1876.0	96.2	98.2
1870.4	96.0	98.3	1893.7	97.5	98.3	1951.4	96.9	98.3	1886.3	96.2	98.2
1876.9	96.4	98.3	1912.5	98.1	98.3	1964.5	96.7	98.3	1890.5	97.3	98.2
1888.1	96.9	98.3	1935.1	97.7	98.4	1972.2	96.8	98.2	1895.3	98.1	98.2
1898.7	98.3	98.4	1953.4	96.9	98.4	1975.9	98.6		1917.0	97.5	98.2
1917.7	98.2	98.4	1957.4	96.8	98.4	1990.9	97.7	98.8	1937.0	97.4	98.2
1940.5	97.8	98.4	1971.0	96.9	98.4	1997.7	95.4		1942.9	97.2	98.2
1950.2	97.1	98.5	1974.6	98.7	98.9	2006.5	96.4		1960.4	96.7	98.2

	As-built	2010	2011	2012
Avg. Water Surface Slope	0.0035	0.0022	0.0020	0.0026
Riffle Length	32	30	25	28
Avg. Riffle Slope	0.0042	0.0010	0.0010	0.0012
Pool Length	16	15	10	15
Avg. Pool Slope	76	76	0.0000	0.0011

 Project Name
 McIntyre Creek - Year 3 (2012) Profile

 Reach
 Reach 3 (36+00 - 47+55)


 Feature
 Profile

 Date
 8/1/12

 Crew
 Perkinson, Dean, Jernigan

	2010			2010			2011			2012	
	As-built Survey			ear 1 Monitoring \S			ear 2 Monitoring \S			ear 3 Monitoring \S	
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
3595.8	103.8		3600.4	102.8	103.8	3594.1	103.8		3588.8	103.5	103.4
3612.0	103.7	104.0	3611.1	103.4	104.1	3611.8	103.5	103.9	3604.6	103.2	103.6
3620.2	102.5	103.9	3615.7	102.3	104.1	3616.8	102.1		3608.6	102.9	103.6
3629.0	102.4	103.9	3626.9	102.0	104.1	3625.8	102.0		3614.2	101.7	103.6
3633.6	102.8	103.9	3632.0	102.3	104.1	3638.2	102.3	103.9	3622.9	101.8	103.5
3650.1	102.7	103.9	3639.3	102.3	104.1	3651.1	102.4	103.9	3631.1	102.0	103.6
3662.4	102.5	104.0	3654.0	102.4	104.1	3657.4	102.7	103.9	3638.1	102.2	103.6
3674.4	102.4	104.0	3662.0	102.6	104.1	3663.9	102.0	103.9	3645.6	102.3	103.6
3681.7	102.8	104.0	3666.8	101.9	104.1	3672.5	101.8	103.9	3650.3	102.6	
3695.1	103.2	104.0	3674.6	102.0	104.1	3684.6	102.8	103.9	3654.7	102.3	103.5
3717.0	103.1	104.0	3681.6	102.6	104.2	3701.3	102.8	103.9	3662.8	101.5	103.6
3730.2	103.0	103.9	3692.8	102.9	104.2	3733.0	102.8	103.9	3676.6	102.2	103.6
3747.3	102.4	103.9	3716.4	102.6	104.2	3745.5	102.2	103.9	3689.4	102.6	103.6
3751.6	102.1	104.0	3743.5	102.8	104.2	3756.5	102.0		3700.7	102.4	103.6
3767.3	103.2	103.9	3749.0	102.0	104.2	3762.5	102.6	103.9	3709.4	102.4	103.6
3788.1	103.4	103.9	3757.9	102.0	104.2	3794.4	103.2		3719.2	102.3	103.7
3819.3	102.9	104.0	3762.6	102.2	104.2	3796.5	103.2	103.9	3735.4	102.4	103.6
3830.3	102.8	104.0	3770.2	102.0	104.2	3807.6	103.1	103.9	3746.3	101.3	103.6
3837.4	103.5	103.9	3772.2	103.0	104.2	3825.6	102.5	103.9	3752.9	101.3	103.5
3844.1	102.6	104.0	3795.8	103.0	104.2	3835.2	102.6	103.8	3761.7	102.3	103.7
3855.3	102.9	103.9	3823.8	102.5	104.1	3851.0	102.3	103.8	3770.6	102.9	103.6
3857.4	104.1		3836.0	102.6	104.2	3855.4	103.9		3776.9	102.7	103.6
3882.6	103.4	104.2	3841.7	102.3	104.2	3877.3	103.0	104.0	3785.3	103.1	103.6
3893.1	103.4	104.2	3853.8	102.4	104.2	3884.3	103.0	103.9	3794.4	102.9	103.6
3911.6	102.8	104.1	3855.4	104.0	104.2	3892.8	102.6		3804.7	102.8	103.6
3921.5	104.4	104.4	3871.7	103.3	104.4	3903.4	102.5	103.9	3812.9	102.6	103.6
3944.6	103.5	104.4	3890.9	102.6	104.3	3919.5	102.6	104.0	3823.7	102.4	103.7
3058 5	103.4	104.5	3000.0	102.7	104.3	3021.1	104.0		38343	102.4	103.6

	As-built	2010	2011	2012
Avg. Water Surface Slope	0.0035	0.0020	0.0025	0.0029
Riffle Length	32	35	28	29
Avg. Riffle Slope	0.0042	0.0027	0.0003	0.0022
Pool Length	16	12	16	16
Pool to Pool Spacing	76	76	0.0005	0.0018

Weighted Pebble Cou	unt														
Percent Riffle:			Percent	Run:											
Percent Pool:	100		Percent G	ilide:			Pebble Cou	unt,							
Material	Size Range	e (mm)	Total #												
silt/clay	0	0.062	52.0	##											
very fine sand	0.062	0.13	0.0	##											
fine sand	0.13	0.25	8.0	##		Note	: Cross Sec	tion 1 - Po	ol						
medium sand		0.5	4.0	##											
coarse sand	0.5	1	0.0	##	4000/				Pek	oble Count,					
very coarse sand		2	0.0	##	100%						<u>, a - a - a - </u>				
very fine grave		4	4.0	##	90%										
fine gravel		6	4.0	##	80%					/					
fine gravel		8	12.0	##	00%					///					
medium grave		11	8.0	##	70%										
medium grave		16	0.0	##	60%										
coarse grave		22	4.0	##											
coarse grave		32	0.0	##	Than										
very coarse grave		45	0.0	# # # #	≟ 40%										
very coarse grave small cobble		64 90	4.0	# # # #	ဉ										
medium cobble		128	0.0	##	這 30%										
large cobble		180	0.0	##	20%										
very large cobble		256	0.0	##	<u>~</u>										
small boulder		362	0.0	##	10% ^۵										
small boulder		512	0.0	##	0%		•						***		
medium boulder		1024	0.0	##	C	0.01	0.1		1	10		100	100	0	10000
large boulder	_	2048	0.0	##		Particle Si	ze (mm)					D:#			0".1
very large boulder		4096	0.0	##		. artiole of	20 (11111)	—■—Cum	ulative Perce	nt • Per	cent Item -	—— Riffle	→ Pool -	≭ Run −	◆ Glide
bedrock			0.0	#		Size pe	ercent less th	nan (mm)			Percer	nt by substr	rate type		
		nted Count:	100		D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
Tru	ue Total Par		25		#N/A	#N/A	#N/A	8	20	52%	12%	32%	4%	0%	0%

Weighted Pebble Cou	unt														
Percent Riffle:	100		Percent	Run:											
Percent Pool:			Percent G	Slide			Pebble Co	unt,							
Material	Size Range	e (mm)	Total #												
silt/clay	0	0.062	11.8	##											
very fine sand	0.062	0.13	0.0	##											
fine sand	0.13	0.25	8.8	##		Note	: Cross Sec	tion 2 - Rif	fle						
medium sand	0.25	0.5	5.9	##											
coarse sand	0.5	1	2.9	##	4000/				Pek	ble Count,					
very coarse sand		2	8.8	##	100%										
very fine grave		4	0.0	# #	90%						F				
fine gravel		6	0.0	##	80%						p-4				
fine gravel		8	0.0	##	00%										
medium grave		11	11.8	##	70%										
medium grave		16	11.8	##	60%										
coarse grave		22 32	0.0 5.9	##											
coarse grave very coarse grave		32 45	2.9	##	Than 70%										
very coarse grave		64	2.9	##	F 40%										
small cobble	_	90	0.0	##	96										
medium cobble		128	0.0	##	這 30%										
large cobble		180	0.0	# #	20%			4							
very large cobble		256	0.0	##	ਰ 10%			•			•				
small boulder		362	0.0	##				•			* .				
small boulder	362	512	0.0	##	0%	+			₩		* * * *	400	***	+++	10000
medium boulder	512	1024	0.0	##	C).01	0.1		1	10		100	100	U	10000
large boulder	1024	2048	0.0	##		Particle Si	ze (mm)		ulative Perce	nt A Dor	reent Item	Difflo	——— Pool —	— Dun —	- Glida
very large boulde		4096	0.0	##			` ′	- - -Culli	uialive FelCe	iit ▼ Pei	Centileni .			- Ruii -	Gliue
bedrock		_	26.5	#		Size pe	ercent less th	nan (mm)			Percei	nt by substi	rate type		
	Weigh	hted Count:	100		D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
Tru	ue Total Par	rticle Count:	34		0.125	0.46	1.8	16	41	12%	26%	35%	0%	0%	26%

Weighted Pebble Cou	ınt														
Percent Riffle:	100		Percent	Run:											
Percent Pool:			Percent C	Slide			Pebble Co	unt,							
Material	Size Range	e (mm)	Total #												
silt/clay	0	0.062	38.5	##											
very fine sand	0.062	0.13	7.7	##											
fine sand	0.13	0.25	11.5	##		Note	: Cross Sec	tion 3 - Rif	fle						
medium sand	0.25	0.5	0.0	##											
coarse sand	0.5	1	7.7	##	4000/				Pet	ble Count,					
very coarse sand	1	2	0.0	##	100%						2 2 2				
very fine grave		4	15.4	##	90%										
fine grave	4	6	0.0	##	80%										
fine grave	6	8	3.8	# #	00%										
medium gravel	8	11	7.7	# #	70%										
medium gravel	11	16	3.8	# #	60%										
coarse grave	16	22	0.0	##				7							
coarse grave	22	32	0.0 3.8	##	Than 20%			4							
very coarse grave		45 64	0.0	##	± 40%										
very coarse grave small cobble	64	90	0.0	##	e e										
medium cobble		128	0.0	##	這 30%										
large cobble		180	0.0	##	20% Low										
very large cobble		256	0.0	##	ы - 10%					*					
small boulder	256	362	0.0	##	10%		•		•						
small boulder	362	512	0.0	##	0%				'''+ + '			♦ ♦ ♦	 		
medium boulder	512	1024	0.0	##	0).01	0.1		1	10		100	100	0	10000
large boulder		2048	0.0	# #		Particle Si	ize (mm)	- 0	ul-tim D-			D:m	. DI	D	01:4-
very large boulder	2048	4096	0.0	# #		1 411000 0	.20 ()	—■ —Cum	ulative Perce	nt • Per	cent Item -	—— Riffle	→ Pool –	∗-Run -	→ Glide
bedrock			0.0	#		Size pe	ercent less th	nan (mm)			Percer	nt by subst	rate type		
	Weigh	nted Count:	100	i l	D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
Tru	ue Total Par	l-	26	1	#N/A	#N/A	0.2	8	14	38%	27%	35%	0%	0%	0%

Medium boulder 512 1024 0.0 # #	Weighted Pebble Coเ	ınt														
Material Size Range (mm) Total #	Percent Riffle:			Percent	Run:											
Silt/clay	Percent Pool:	100		Percent C	Slide			Pebble Co	unt,							
very fine sand	Material	Size Range	e (mm)	Total #												
fine sand medium sand coarse sand 0.25 0.5 0.0 dr # # wery coarse sand 1 2 7.7 dr # # # # # # # # # # # # # # # # # #	silt/clay	0	0.062	53.8	##											
medium sand	very fine sand	0.062	0.13	0.0	##											
Coarse sand 0.5	fine sand	0.13	0.25	15.4	##		Note	: Cross Sec	tion 4 - Po	ol						
very coarse sand very fine grave fine grav	medium sand	0.25	0.5	0.0	##											
Very fine grave 2	coarse sand	0.5	1	0.0	##					Pel	ble Count,					
fine grave	very coarse sand		2	7.7		100%					/					
fine grave medium grave medium grave to the medium cobble for the medium cobble for the medium cobble for the medium grave to	very fine grave					90%					/					
Medium grave						000/										
Medium grave 11		_				80%										
coarse grave coarse grave coarse grave very large cobble very large v	•	_				70%				₩/						
Coarse grave	•				4111	60%										
very coarse grave very large cobble of the very large boulde of the very	0				411											
very coarse grave 45 64 0.0 ## small cobble 64 90 0.0 ## medium cobble 90 128 0.0 ## large cobble 128 180 0.0 ## very large cobble 180 256 0.0 ## small boulder 362 512 0.0 ## medium boulder 512 1024 0.0 ## large boulder 1024 2048 0.0 ## very large boulder 2048 4096 0.0 ## bedrock 0.0 ## Size percent less than (mm) Percent by substrate type	0				411	ے50%										
Small cobble 64 90 0.0 # # # # # # # # # # # # # # # # # #	, ,				41 11	<u></u> 40%										
Medium cobble 128	, ,					ner										
small boulder small boulder small boulder small boulder medium boulder small boulder to the properties of					41 1	⊑ 30%										
small boulder small boulder small boulder small boulder medium boulder small boulder boulder small boulder sma					411	E 20%					*					
small boulder small boulder small boulder small boulder medium boulder small boulder to the properties of	•				411	er Serie			•							
small boulder medium boulder medium boulder stage boulder very large boulder very large boulder bedrock 512 1024 0.0 # # # 0.01 0.1 1 1 10 100 1000 1	, ,					L 10%				•						
medium boulder large boulder very large boulder very large boulder bedrock 1024 2048 0.0 ## # Particle Size (mm) 0.01 0.1 1 1 10 100 1000 1000 1000 1000					41 1	0%						***	 	 		
large boulder very large boulder 2048 0.0 tvery large boulder 2048 4096 0.0 bedrock 0.0 # # Particle Size (mm)			_			0).01	0.1		1	10		100	1000)	10000
very large boulde 2048 4096 0.0 # # Size percent less than (mm) Percent by substrate type			_				Particle S	ize (mm)		=	. =					
bedrock 0.0 # Size percent less than (mm) Percent by substrate type	ŭ	_			41 1		i ditioid o	120 (111111)	—■ —Cum	ulative Perce	nt ◆ Pe	rcent Item -	—— Riffle	→ Pool –	∗-Run -	◆ Glide
	, ,	2040	1000		41'' '' I		Size ne	ercent less th	nan (mm)			Percer	nt by subst	rate type		
vveionieo counct. Dud il il 1916 il 1935 il 1950 il 1984 il 1995 il Silvolav il Sano il Oravel il Connie il nollider il ner	Dourous	Weigh	nted Count:	100	1	D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
	Trı	J			1								•			0%

Weighted Pebble Cou	unt														
Percent Riffle:	50		Percent	Run:											
Percent Pool:	50		Percent G	Slide			Pebble Co	unt,							
Material	Size Range	e (mm)	Total #												
silt/clay	0	0.062	38.1	##											
very fine sand	0.062	0.13	1.7	##											
fine sand	0.13	0.25	10.9	##		Note									
medium sand	0.25	0.5	2.6	##											
coarse sand	0.5	1	2.5	##	4000/				Pek	ble Count,					
very coarse sand		2	4.5	##	100%					_هرااا	0 0				
very fine grave		4	10.2	##	90%										
fine gravel		6	1.0	# #	80%										
fine gravel		8	3.8	##	00%					,					
medium grave		11	7.0	##	70%										
medium grave		16	4.2	##	60%										
coarse grave		22 32	1.0 1.7	##											
coarse grave very coarse grave		45	1.7	# #	Than 70%				11						
very coarse grave		64	0.8	##	H 40%										
small cobble		90	1.0	##	30% 30%										
medium cobble		128	0.0	##	⊥ 30%		4								
large cobble		180	0.0	##	20%										
very large cobble		256	0.0	##	ਰ 10%			•							
small boulder		362	0.0	##						- [•				
small boulder	362	512	0.0	##	0%		3 1		*	+ 9 + -		400	* * * * * *	+ +	40000
medium boulder	512	1024	0.0	##		0.01	0.1		1	10		100	100	U	10000
large boulder	1024	2048	0.0	##		Particle Si	ze (mm)	_ = _Cum	ulative Perce	nt A Doi	rcent Item -	—— Difflo	——— Pool —	Dun _	- Glida
very large boulde	2048	4096	0.0	##			` ′ [uialive F el Ce	III. ▼ FEI		IXIIIE		- INUII	Gliue
bedrock			7.5	#		Size pe	rcent less th	nan (mm)			Percer	nt by substr	rate type		
	Weigl	hted Count:	100		D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
Tru	ue Total Par	rticle Count:	111		#N/A	#N/A	0.2	9	25	38%	22%	31%	1%	0%	8%

Table 10a. Baseline Stream Data Summary McIntyre Creek at Hornets Nest Park (EEP Project Number 243)

Parameter	Gauge		Regional Cı	ırve]	Pre-Existing C	Condition	1]	Reference	Reach(es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.		Mean Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					17.0		23.8			13.1				18.7	22.9		16.7			17.6	
Floodprone Width (ft)					100		300			78				100	300		150			150	
BF Mean Depth (ft)					2.5		2.7			1.6				2.3	2.8		1.5			2.0	
BF Max Depth (ft)					3.1		3.7			2.8				3.3	4.0		2.9			3.2	
BF Cross Sectional Area (ft ²)					42.1		58.6			21.3				42.0	70.0		26.4			32.9	
Width/Depth Ratio					6.9		9.7			8.1				8.1	8.1		8.5			11.7	
Entrenchment Ratio					4.5		17.5			5.9				5.0	16.0		8.5			9.0	
Bank Height Ratio					1.3		1.9			1.0				1.0	1.0		1.0			1.0	
Profile		<u> </u>			•	•	<u>I</u>		<u> </u>		<u>. </u>			<u> </u>	L	<u> </u>	•	<u> </u>			
Riffle length (ft)																	10.1	32.1	32.8	91.7	
Riffle slope (ft/ft)					0.003		0.006		0.0050			0.0110		0.0025	0.0065		0.0000	0.0012	0.0042	0.0313	
Pool length (ft)									7.0			18.0		12.0	37.0		4.3	17.3	15.6	59.6	
Pool Max depth (ft)					4.1		4.1			3.2				2.9	3.4		5.0			5.3	
Pool spacing (ft)									11.0			45.0		46.0	115.0		48.0	77.0	76.0	169.0	
Pattern																					
Channel Beltwidth (ft)					34		58			38				95	115		19	45	41	107	
Radius of Curvature (ft)					60.3		148.1		10.3			25.6		37	70		24	49	40	246	
Rc:Bankfull width (ft/ft)					2.6		6.3		0.8			2		2	4		1.4	2.8	2.3	14.3	
Meander Wavelength (ft)					4.1		7.3		60			71		90	230		88	132	128	220	
Meander Width ratio					1.4		2.5		4.6			5.4		5	10		1.1	2.6	2.4	6.2	
Transport parameters																					
Reach Shear Stress (competency) lbs/ft ²																					
Max part size (mm) mobilized at bankfull																					
Stream Power (transport capacity) W/m ²																					1
Additional Reach Parameters		<u> </u>					<u>l</u>		<u> </u>		<u> </u>			<u> </u>		<u>l</u>	<u> </u>	<u> </u>			
Rosgen Classification						E5-type	e			Е	5-type				E5-type				E-type		
Bankfull Velocity (fps)						4.0 - 4.									$\frac{-5}{4.2 - 4.4}$						
Bankfull Discharge (cfs)						180 - 28															
Valley Length (ft)											240										
Channel Thalweg Length (ft)									ĺ		300				5178				5178		
Sinuosity						1.1 - 1.2	.2		1.25					İ	1.4				1.4		
Water Surface Slope (ft/ft)						0.0021 - 0.0			0.0044				0.0	021-0.00	25			0.0035		-	
BF slope (ft/ft)																					
Bankfull Floodplain Area (acres)																					
% of Reach with Eroding Banks												· · · · · ·			_	_	_				
Channel Stability or Habitat Metric						34 - 39 BI	EHI	HI													
Biological or Other																					

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)
McIntyre Creek at Hornets Nest Park (EEP Project Number 243)

Parameter	Pre-Existing Condition	n			Referer	ce Reach(e	s) Data			Design			Moni	toring	Baseline	
Ri%/RU%P%G%/S%												45 1	4 25	15	NA	
SC%/SA%/G%/C%/B%BE%																
d16/d35/d50/d84/d95	0.2-0.3 4.0-12.0				0.5	3.0-5.0										
Entrainment Class < 1.5/1.5-1.99/2.0-4.9/5.0-																
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0			30	00								5178				

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)
McIntyre Creek at Hornets Nest Park (EEP Project Number 243)

			Cr	oss Sectio	n 1					Cı	oss Sectio	n 2					Cr	oss Sectio	n 3					Cr	oss Sectio	on 4		
Parameter				Pool							Riffle							Riffle							Pool			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	20.0	19.6	19.4	19.4				16.7	17.0	15.9	16.1				17.6	17.0	11.1	10.9				15.5	15.5	13.7	13.1			
Floodprone Width (ft) (approx)	NA	NA	NA	NA				150.0	150.0	150.0	150.0				150.0	150.0	150.0	150.0				NA	NA	NA	NA			
BF Mean Depth (ft)	2.8	3.0	3.2	3.6				2.0	2.0	2.1	2.1				1.5	1.5	2.1	2.1				3.1	3.0	3.3	3.5			
BF Max Depth (ft)	5.0	5.3	6.1	6.3				3.2	3.0	3.2	3.1				2.9	2.8	2.6	2.7				5.3	5.2	4.1	4.8			
BF Cross Sectional Area (ft ²)	55.4	58.5	61.3	70.0				32.9	33.8	33.5	33.8				26.4	25.2	23.8	22.4				48.1	47.0	45.2	46.2			
Width/Depth Ratio	NA	NA	NA	NA				8.5	8.6	7.5	7.7				11.7	11.4	5.2	5.3				NA	NA	NA	NA			
Entrenchment Ratio	NA	NA	NA	NA				9.0	8.8	9.4	9.3				8.5	8.8	13.5	13.8				NA	NA	NA	NA			
Bank Height Ratio	1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0				1.0	1.0	1.0	1.0			
d50 (mm)	3.1	0.4	0.3	NA				15.6	11.7	0.4	1.8				13.6	8.7	4.4	0.2				6.3	0.1	0.2	NA			

Table 11b. Monitoring Data - Stream Reach Data Summary

McIntyre Creek at Hornets Nes	t Park (E	EP Proj	ect Num	ber 243)																										
Parameter			Baseline	;				MY-1					MY-2					MY-3					MY-4					MY-5		
							•	,				•			•		•			•	•		•							
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
Only	465			1= :															464											
BF Width (ft)				17.6		17.0			17		11.1			15.9		10.9			16.1											
Floodprone Width (ft				150		150			150		150			150		150			150											
BF Mean Depth (ft)	1.5			2.0		1.5			2.0		2.1			2.1		2.1			2.1											
BF Max Depth (ft)	1		1	3.2		2.8			3.0		2.6			3.2		2.7			3.1											
BF Cross Sectional Area (ft ²)				32.9		25.2			33.8		23.8			33.5		22.4			33.8											
Width/Depth Ratio				11.7		8.6			11.4		5.2			7.5		5.3			7.7											
Entrenchment Ratio				9.0		8.8			8.8		9.4			13.5		9.3			13.8											
Bank Height Ratio	1.0			1.0		1.0			1.0		1.0			1.0		1.0			1.0											
Profile - Reach 1			•																		_					-				
Riffle length (ft)		32.1	32.8	91.7		10.9	25.9	24.5	50.5		7.4	27	21.1	76.8		15	41.2	33.8	99.3	25.7										
Riffle slope (ft/ft)		0.0012	0.0042	0.0313		0.0000	0.0047	0.0008	0.0296		0.0000	0.0023	0.0007	0.0126		0.0000	0.0034	0.0001	0.0221	0.01										
Pool length (ft)	4.3	17.3	15.6	59.6		6.4	19.6	19.3	35.8		10.4	20.7	20.3	35.9		4.3	17.9	18.5	29.0	6.7										
Pool Max depth (ft)				5.3		5.2			5.3		4.1			6.1		4.8			6.3											
Pool spacing (ft)) 48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0											
Profile - Reach 2		1																		1	•		1					بلسير		
Riffle length (ft)		32.1	32.8	91.7		11.9	30.1	30.1	58.2		4.7	24.7	22.4	61.2		5.9	28	19.4	102.5	25.2										
Riffle slope (ft/ft)		0.0012	0.0042	0.0313		0.0000	0.0100	0.0001	0.0061		0.0000	0.0014	0.0010	0.0046		0.0000	0.0012	0.0005	0.0050	0.00										
Pool length (ft)		17.3	15.6	59.6		4.0	14.7	9.5	43.3		2.5	10.7	9.9	22.2		4.2	14.6	13.1	32.1	8.7										
Pool Max depth (ft)				5.3		5.2			5.3		4.1			6.1		4.1			6.1											
Pool spacing (ft)	48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0											
Profile - Reach 3																						1	1							
Riffle length (ft)	10.1	32.1	32.8	91.7		9.7	34.6	34.7	63.7		7.5	28	27	61.1		5.5	27.3		48.4	11.7										
Riffle slope (ft/ft)		0.0012		0.0313		0.0010	0.0027	0.0011	0.0150		0.0000	0.0007	0.0003	0.0041		0.0000	0.0022		0.0089	0.00										
Pool length (ft)		17.3	15.6	59.6		4.5	12.2	12.1	21.2		1.3	15.5	11.5	42.2		5.1	15.9	15.6	33.7	8.0										
Pool Max depth (ft)				5.3		5.2	^		5.3		4.1		-	6.1		4.1			6.1											
Pool spacing (ft)	48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0		48.0	77.0	76.0	169.0							<u> </u>				
Pattern			1												1		1	1			1			1		1				
Channel Beltwidth (ft)		45	41	107																										
Radius of Curvature (ft		49	40	246																										
Re:Bankfull width (ft/ft)		2.8	2.3	14.3																										
Meander Wavelength (ft)		132	128	220																										
Meander Width ratio	1.1	2.6	2.4	6.2																										
																													_	
Additional Reach Parameters			Г.					Ε.			1		Г.			1		Γ.			ı					1				
Rosgen Classification	1		E-type					E-type			1		E-type			1		E-type												
Channel Thalweg Length (ft	1		5178					5178			1		5178 1.4			1		5178								1				
Sinuosity	У		1.4					1.4			-		1.4			-		1.4												
Water Surface Slope (Channel) (ft/ft	,		0.0035				0.0	0020 - 0.00	42			0.0	002 - 0.00	41			0.0	0026 - 0.00	043											
BF slope (ft/ft											-					-														
Ri%/RU%P%G%/S%	6 45	14	25	15		41	17	22	20		38	21	24	17		45	13	26	16				I							
SC%/SA%/G%/C%/B%BE%	43	14	23	13		41	1/	22	20		30	Z1	24	1 /		43	13	20	10											
d16/d35/d50/d84/d95	U										NA	0.18	0.3	7	15	NA	NA	0.2	9	25	1									
% of Reach with Eroding Banks	0										14/7	0.10	0.0		13	14/7	14/7	U.Z	<u> </u>	20	1	I .	I	I		 				
Channel Stability or Habitat Metric											1					1														
Chamier Stability of Habitat Metric																														
Biological or Other	r																													
Diological of Other	<u> </u>										1					I					I					I				

APPENDIX E HYDROLOGY DATA

Table 12. Verification of Bankfull Events

2012 (Year 3) Groundwater Gauge Graphs

Figure 3. Annual Climatic Data vs. 30-year Historic Data

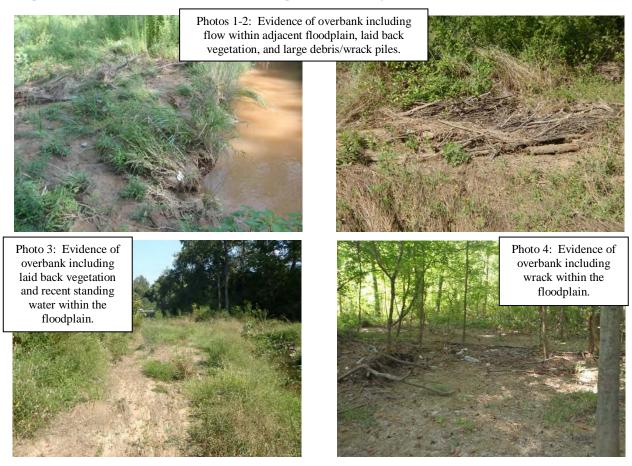
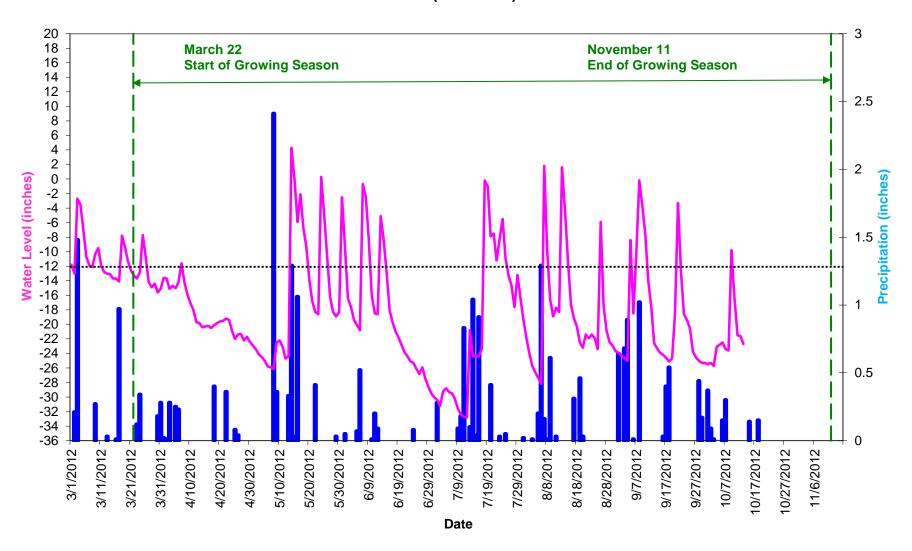
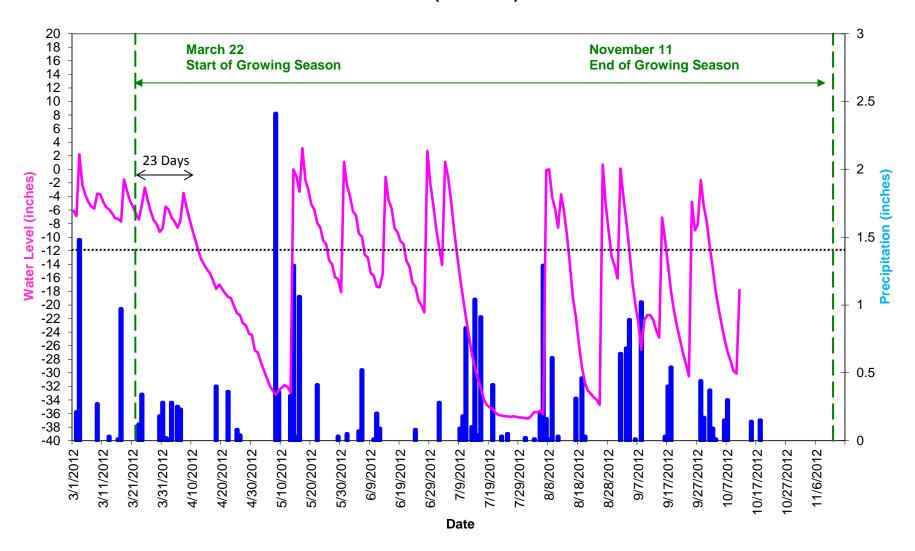
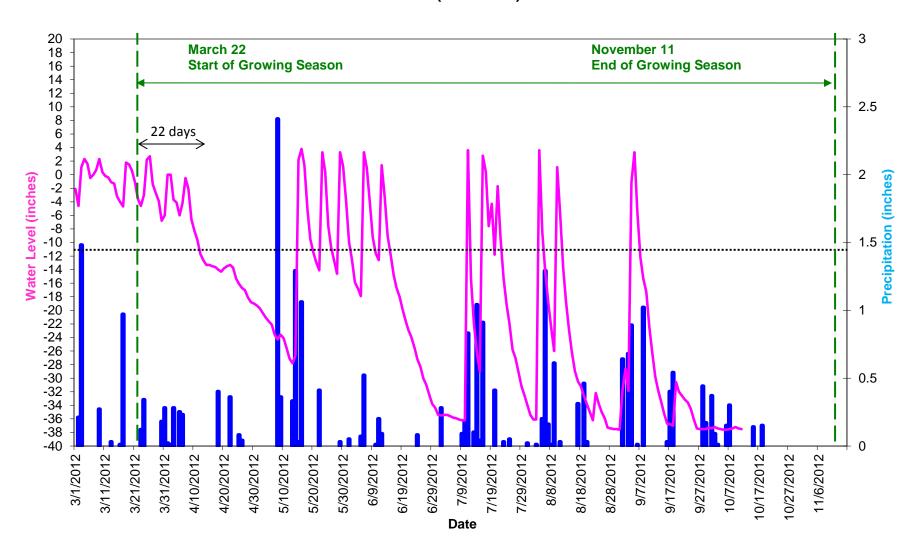

Table 13. Wetland Hydrology Criteria Attainment Summary

Table 12. Verification of Bankfull Events

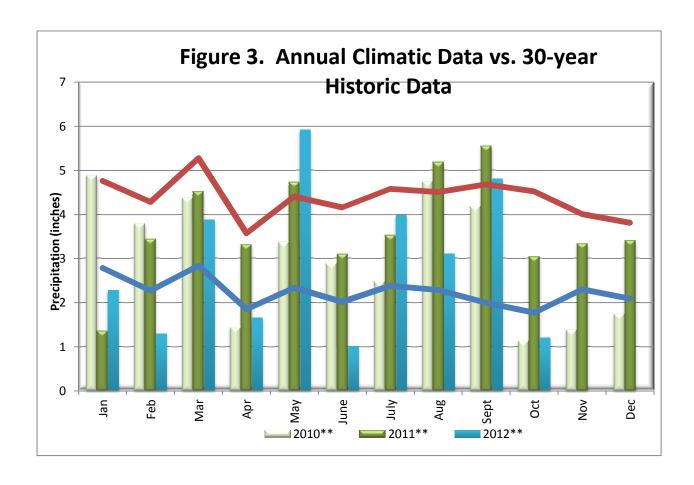

McInytre Creek Restoration Site (EEP Project Number 243)

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
September 23, 2010	July 12, 2010	Total of 2.14 inches* of rain reported to fall over 2 days (July 11-12, 2010), in addition to large wrack/debris piles and evidence of overbank flows within the adjacent floodplain.	1-2
September 23, 2010	August 19, 2010	Total of 1.1 inches* of rain reported to fall over 2 days (August 18-19, 2010) after a total of 4.43 inches* of rain the preceding 4 weeks, in addition to laid back vegetation and evidence of recent standing water within the floodplain.	3
October 18, 2010	September 29, 2010	Total of 4.04 inches* of rain reported to fall over 6 days (September 25-30, 2010).	
October 21, 2011	August 5, 2011	Total of 2.50 inches* of rain reported to fall on August 5, 2011.	4
August 6, 2012	May 8, 2012	Total of 2.77 inches* of rain reported to fall on May 8-9, 2012.	
August 6, 2012	May 16, 2012	Total of 2.71 inches* of rain reported to fall on May 13-16, 2012.	


^{*} Reported at KCLT Weather Station at the Charlotte Airport (Weatherunderground 2012).


McIntyre Creek Gauge 1 Year 3 (2012 Data)

McIntyre Creek Gauge 2 Year 3 (2012 Data)


McIntyre Creek Gauge 3 Year 3 (2012 Data)

Month	30th %*	70th %*	2010**	2011**	2012**
Jan	2.79	4.76	4.88	1.36	2.29
Feb	2.27	4.28	3.79	3.44	1.30
Mar	2.84	5.28	4.37	4.52	3.89
Apr	1.85	3.57	1.44	3.32	1.67
May	2.34	4.41	3.37	4.73	5.92
June	2.02	4.16	2.89	3.10	1.02
July	2.38	4.58	2.48	3.53	3.98
Aug	2.29	4.51	4.75	5.18	3.11
Sept	2	4.68	4.18	5.55	4.82
Oct	1.77	4.52	1.13	3.04	1.21
Nov	2.3	4.01	1.38	3.34	
Dec	2.09	3.81	1.74	3.41	

^{*}Charlotte Douglas International Airport 30-year historic data (NOAA 2004)

^{***} October rain data through the 23rd

^{**}Charlotte Douglas International Airport rainfall data (Weatherunderground 2012)

Table 13. Wetland Hydrology Criteria Attainment Summary McInytre Creek Restoration Site (EEP Project Number 243)

Gauge	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)							
	Year 1 (2010)*	Year 2 (2011)*	Year 3 (2012)*	Year 4 (2013)	Year 5 (2014)			
1		No/7 day (3.0 %)	No/8 day (3.4 %)					
2		Yes/38 day (16.3 %)	Yes/23 day (10 %)					
3		Yes/41 day (17.6 %)	No/22 day (9.4 %)					

^{*} Note that gauges were installed in 2011 and no data is available for baseline, or year 1 (2012) monitoring periods.